As most people can attest, conquering vices and changing bad habits are difficult. Even when the motivation to change is strong, self-control failures are common. Subjectively, it often feels as though our capacity to self-regulate waxes and wanes in the face of new temptations, changing moods, and fatigue. Contemporary investigations into the causes of self-regulation failure have demonstrated that the ability to self-regulate can be undermined by a variety of threats that act by impairing awareness, exhausting limited resources, or increasing the salience of temptations. Perhaps the most potent of these threats is negative affect. When people experience emotional distress, be it in the form of a bad mood, disappointment, or social rejection, they often find it more difficult to resist temptations or to suppress unwanted impulses and may engage in various forms of self-defeating behaviors (for a review, see Baumeister, 1997). However, the relationship between emotions and self-control is by no means all one-way; too much self-regulation over a period of time can increase emotional reactivity, as well as impair an individual's ability to regulate his or her emotions.

Much like the experience of hunger or thirst, emotions serve to motivate behavior and predispose individuals toward certain actions (e.g., Keltner & Gross, 1999; Levenson, 1994). It has been suggested that one function of emotion is to indicate whether individuals are succeeding or failing to meet their goals (Carver & Scheier, 1990). Therefore, just as it would be fatally maladaptive for an organism to have the ability to turn off thirst, it would be just as detrimental to be able to completely shut down emotions. However, there are times when our emotions interfere with our goals or may lead us to further distress, such as when our mood causes us to violate social norms (i.e., being tragically depressed on a first date or overjoyed at a funeral). Thus, it is often in our best interests to be able to regulate our affective states.

In this chapter, we take the view that regulating emotions relies on much of the same cognitive and neural machinery as regulating other responses (e.g., thoughts, behaviors, impulses) with the understanding that, all things being equal, emotions are more difficult to suppress or inhibit. Unlike behaviors, thoughts, or cravings, all of which tend to have a clear target of regulation (e.g., “I must not grab the cigarette and light it”), affect is typically more diffuse, with no clear action to regulate. Indeed, one of the central findings of research on emotion regulation is that direct, response-focused attempts to suppress the outward expression of emotion are more cognitively taxing and less success-
ful than antecedent-focused methods such as distraction and reappraisal (Richards & Gross, 2000). Although there may very well be advantages to considering emotion regulation as a separate domain (i.e., Gross, 2002), for the present discussion we consider it fruitful to think of emotion regulation as another type of self-regulation, thereby rendering it subject to the same vulnerabilities and threats as other forms of self-control (see Heatherton & Wagner, 2011).

In the following sections, we examine the relationship among emotions, emotion regulation, and self-regulation failure. We focus primarily on intrinsic forms of emotion regulation, in which individuals regulate their own internal affective states, rather than on extrinsic emotion regulation, in which individuals attempt to influence the emotions of others through affect displays or other means. Along with an overview of the mechanisms whereby emotions can derail self-regulation, we also consider the case of misregulation, for example, when individuals seek out temptations (e.g., food, drugs or alcohol) as a misguided strategy to repair their mood or escape from aversive self-awareness resulting from overindulgence of these same temptations. In addition, we review findings that regulation of emotions exerts a cost on self-regulatory capacity and, conversely, that engaging in effortful self-regulation can impair emotion regulation. Finally, we highlight recent research suggesting that emotional reactivity is increased when self-regulatory resources are depleted.

The Role of Negative Affect in Self-Regulation Failure

When dieters, substance abusers, or sexual offenders are asked to describe their reasons for engaging in harmful behaviors (e.g., binge eating, sexual aggression, smoking, and drug use) they overwhelmingly report that their actions were triggered by negative affect (Haedt-Matt & Keel, 2011; Kassel, Stroud, & Paronis, 2003; Pithers, Kashima, Cumming, Beal, & Buell, 1988; Sinha, 2007). Among the general population, negative affect is similarly associated with impulsive and self-defeating behaviors, such as alcohol consumption (Witkiewitz & Villarroel, 2009), gambling (Raviv, 1993), risky sexual behavior (Bousman et al., 2009; Roberts et al., 2012), excessive Internet usage (LaRose, Lin, & Eastin, 2003), and aggression (Berkowitz, 1989). Although multiple emotions can be considered negative or positive in valence, the extant literature on the role of affect in self-regulation seldom dissociates them. Here, too, we employ the broad categories of negative and positive affect, noting that these necessarily subsume many different emotion categories.

The role of negative affect in initiating self-regulation failure has also been studied in experimental settings using a variety of affect induction procedures. Generally, these procedures involve exposure to sad or aversive stimuli in the form of images, music, or movie clips. Other commonly used techniques include writing about negative life events (i.e., a funeral) or reading a series of increasingly negative self-referential statements, such as in the Velten (1968) mood induction procedure. Much of this work has been conducted within the realm of drug and alcohol addiction, where negative affect has long been known to be the most potent cause of relapse (e.g., Marlatt & J. Gordon, 1985). In smokers and other substance abusers, inducing negative affect in the laboratory has been shown to increase substance cravings (Childress et al., 1994; Fox, Bergquist, Hong, & Sinha, 2007; Tiffany & Drobes, 1990; Willner & Jones, 1996) and the intensity of substance use (McKee et al., 2011) when compared to neutral or positive mood inductions.

Chronic dieters are another population that has received considerable attention with regards to the relationship between negative affect and self-regulation failure (i.e., disinhibited eating). Inducing negative emotional states in dieters increases eating both in comparison to non-dieters, but also to dieters in a neutral mood (e.g., Baucom & Aiken, 1981; Heatherton, Striepe, & Wittenberg, 1998; Herman & Polivy, 1975). For instance, Heatherton, Herman, and Polivy (1991) induced negative affect either by giving participants negative performance feedback during a cognitive task or by instructing them that they would have to prepare a speech that would be given in the presence of their peers. In order to measure overeating, participants were asked to participate in an unrelated taste-test of various flavors...
of ice cream, which, unbeknownst to them, had been weighed prior to the task so that the amount of ice cream consumed could be calculated afterwards. In both cases, dieters ate significantly more ice cream than non-dysphoric subjects. Moreover, this occurred even when negative affect was induced by having participants anticipate a future task (i.e., public speaking). Similar findings have been found for social drinkers, in whom fear of future social evaluations increases alcohol consumption relative to participants who were not going to be evaluated (Higgins & Marlatt, 1975).

Social rejection is another method of inducing negative affect that has a rich history of being associated with behavioral disinhibition, aggression, and violent crimes (e.g., high school shootings; Leary, Kowalski, Smith, & Phillips, 2003). Laboratory studies in which subjects are induced to feel socially excluded have found that being rejected increases aggression (DeWall, Twenge, Bushman, Im, & Williams, 2010; Twenge, Baumeister, Tice, & Stucke, 2001; Warburton, Williams, & Cairns, 2006) and reduces the willingness to help others (Twenge, Baumeister, DeWall, Ciarocco, & Bartels, 2007). For example, when given the opportunity to decide how much hot sauce to administer to a group of people who had previously been identified as disliking spicy foods, rejected individuals assigned four times more hot sauce than nonrejected peers (Warburton et al., 2006). With respect to self-regulation failures, social exclusion has been shown to have the same effects as other negative affect inductions, leading to overeating (Baumeister, DeWall, Ciarocco, & Twenge, 2005; Oaten, Williams, Jones, & Zadro, 2008) and reduced persistence on difficult tasks (Baumeister et al., 2005). Thus it seems that, as with negative affect, social rejection can lead to self-regulation failure, although with an added dose of aggression.

**Why Does Negative Affect Impair Self-Control?**

So far we have reviewed various lines of evidence demonstrating that negative affect can precipitate a variety of maladaptive behaviors, most of which are indicative of poor self-control. In the following sections we consider a number of mechanisms that have been proposed to explain the disinhibiting effects of negative affect. Many of these mechanisms target specific aspects of self-regulation, so it is important at this stage to briefly review some of the core components involved in theories of self-regulation.

Although the details vary, most models of self-regulation can be said to deal with three basic components. The first involves a target state that is to be attained. This can be a goal, such as the goal to quit smoking or to avoid contaminating the palate with cheap wines, but this may also be a set of standards, such as rules of conduct (i.e., whenever possible, avoid drinking and teaching). The second component involves an awareness of one's actions, often referred to as monitoring. In cybernetic models of self-regulation (e.g., Carver & Scheier, 1981), monitoring involves comparing current behavior with the desired goal state and signaling any discrepancy. Monitoring is a particularly vulnerable component of self-regulation, as a failure to monitor ongoing behavior necessarily entails an inability to catch (and therefore control) unwanted actions. The final component is regulation itself. Upon identifying a thought or an emotion that conflicts with his or her goals, that person must be capable of implementing a strategy to inhibit or otherwise disarm the unwanted impulse. Limited capacity models of self-regulation (Baumeister & Heatherton, 1996) emphasize the ways in which this component operates like a muscle and is therefore subject to improvement through training and also to breakdowns through fatigue. Figure 36.1A depicts a model of self-regulation wherein monitoring, limited capacity resources, and goals interact with the strength of impulses and temptations, ultimately determining self-regulatory success or failure.

In the following sections we turn to some of the proposed mechanisms for how negative affect may impair self-control. As we shall see, negative affect appears to have the pernicious ability to operate on each of the aforementioned components of self-regulation. Acting like poison tendrils, it reaches into all aspects of self-control (Figure 36.1B), interfering with monitoring, exhausting the capacity to regulate behavior, and increasing the strength of desires and temptations.
How Might Negative Affect Impair Self-Control?

Negative Affect Increases the Strength of Temptations

In their dual-system model of self-control, Metcalf and Mischel (1999) theorize that negative affect may impair the cool system involved in executing control, while simultaneously increasing the hot system that responds to temptations and rewards. In support of this, studies of delay of gratification have shown that negative affect increases the frequency with which people accept immediate gratification instead of waiting for larger, delayed rewards (Mischel, Ebbesen, & Zeiss, 1973; Seeman & Schwarz, 1974; Tice, Bratslavsky, & Baumeister, 2001).

Interestingly, studies of nonhuman animals have revealed similar patterns in the form of increased reward sensitivity in distressed animals. For example, the induction of emotional distress via social isolation increases food and drug consumption (Campbell Teskey, Kavaliers, & Hirst, 1984; Ramsey & Van Ree, 1993). This heightened reward sensitivity is thought to be due to the release of glucocorticoids during distressing situations that serve to sensitize the brain's reward circuitry to appetitive stimuli (Derache et al., 1995; Piazza & Le Moal, 1996). Although difficult to directly measure in humans, research has demonstrated that when people receive an artificial administration of glucocorticoids, they subsequently eat more relative to a placebo group (Tataranni et al., 1996).

In humans, negative affect has been shown to increase the intensity of smoking in smokers (McKee et al., 2011), as well as how much pleasure people report experiencing when smoking (Zinser, Baker, Sherman,
Emotion and Self-Regulation Failure

& Cannon, 1992). Results from a recent functional neuroimaging study of chronic dieters offer further evidence that negative affect may serve to increase the rewarding properties of appetitive stimuli—in this case of appetizing foods. Following a negative or neutral mood induction, chronic dieters were exposed to appetizing food cues during functional neuroimaging (Wagner, Boswell, Kelley, & Heatherton, 2012). Relative to nondieters, dysphoric dieters showed increased brain activity in the orbitofrontal cortex, a brain area implicated in representing the rewarding value of appetizing foods. Moreover, activity in the orbitofrontal cortex and ventral striatum was correlated with a measure of how distressing subjects found the negative mood induction, suggesting that increases in reward-related brain activity to food cues were dependent on the strength of the negative emotional state (Wagner et al., 2012). Taken together, these findings from both human and animal studies suggest that negative affect may sensitize people to rewards, thereby rendering temptations more difficult to regulate.

Negative Affect Reduces Monitoring through Cognitive Load

Another mechanism whereby negative affect may reduce self-control is by impairing the monitoring component of self-regulation. Specifically, research demonstrates that when dieters overeat following a negative mood induction, they are less aware than nondieters of the precise amount of food they have consumed (Heatherton, Polivy, Herman, & Baumeister, 1993). Reasons for this reduced awareness vary from a motivated desire to escape from negative affect (see the next section) to an increase in cognitive load as a result of ruminating over one’s mood. In this section we focus on the possibility that experiencing negative affect can lead to increased working memory load as people ruminate over their negative mood and neglect to monitor their behavior (Figure 36.1B).

As monitoring entails the ability to maintain goals and standards in working memory (Hofmann, Schmeichel, & Baddeley, 2012), it follows that a concurrent working memory load (e.g., attempting to regulate mood or ruminating over one’s performance anxieties) will impair task-relevant monitoring. Perhaps nowhere has this mechanism been better studied than in research on the phenomenon of stereotype threat. This work has shown that reminding women of negative stereotypes about their gender, or reminding African Americans of negative stereotypes about their race, can lead them to underperform on math or intelligence tests (Spencer, Steele, & Quinn, 1999; Steele & Aronson, 1995). Studies demonstrate that this decrement in performance is at least in part due to a reduction in working memory capacity, which is thought to result from concurrent attempts to regulate affect (Johns, Inzlicht, & Schmader, 2008). This phenomenon has been shown to “spill over” into nonstereotyped domains, as shown in work by Inzlicht and Kang (2010), who demonstrate that inducing stereotype threat in women results in disinhibited eating of unhealthy foods. Further evidence that working memory is impacted by negative affect comes from studies in which inducing emotional distress through the anticipation of an upcoming evaluation (e.g., public speaking) leads to poorer performance on working memory tests (Schoofs, Preuss, & Wolf, 2008). Indeed, one imaging study found that stereotype threat leads to increased activity in brain regions associated with affect (i.e., ventral anterior cingulate cortex) but not in areas that support working memory (Krendl, Richeson, Kelley, & Heatherton, 2008). In this case, the authors argued that it is likely that emotional distress resulting from stereotype threat has downstream effects on working memory.

Outside of the realm of negative affect, research on the effects of cognitive load on self-regulation have shown that cognitive loads impairs a variety of controlled behaviors, from suppressing thoughts (Wegner & Erber, 1992) to inhibiting food consumption in dieters (Ward & Mann, 2000). Mann and Ward (2007) proposed an attentional myopia theory of cognitive load, which posits that cognitive load restricts the range of attention to targets in the immediate environment, thereby rendering individuals vulnerable to a variety of external cues. To the extent that negative affect increases cognitive load through rumination or attempts to regulate affect (Johns et al., 2008), a similar attentional myopia may
occur when people are experiencing a negative emotional state.

Another means by which cognitive load can bring about self-regulation failure comes from research on ironic process theory (Wegner, 1994) demonstrating that when mental capacity is taxed by a concurrent cognitive load, the likelihood of counterintentional behavior increases. Within the realm of emotion regulation, it has been shown that attempting to change one’s mood (either from happy to sad or vice versa) while under a concurrent cognitive load leads to an ironic increase in the opposite mood state. Specifically, participants who were instructed to make themselves feel sad, felt happier if they regulated their mood while under cognitive load (Wegner, Erber, & Zanakos, 1993). With respect to the role of affect in bringing about self-regulation failure, what this suggests is that to the degree that negative affect exerts a cognitive load, attempts to regulate behavior simultaneously, such as stopping oneself from smoking, may bring about the exact behavior one is trying to avoid.

Directing people’s attention toward the self has a long history of being used as a means to increase monitoring, and thereby self-regulation. With regard to negative affect inductions, exposure to mirrors or to video clips of oneself has been shown to eliminate the effects of negative mood on disinhibited behavior. For example, having dieters watch a video of themselves after a mood induction eliminated the effects of negative affect on overeating as compared to dieters who watched a neutral video (Heatherton et al., 1993). Similarly, being forced to sit in front of a mirror has been shown to eliminate the detrimental effects of social rejection on a self-regulation task (Baumeister et al., 2005). It appears then, that increasing self-awareness tempers the impact of negative affect on self-regulation failures by restoring monitoring and increasing the accessibility of behavioral standards (e.g., Scheier & Carver 1983). However, the timing of increased self-attention may be important; for instance, increasing self-attention during the experience of emotion has been shown to heighten the intensity of emotions (Scheier & Carver, 1983; Fenigstein, 1979) which in turn may exacerbate the effects of negative affect on subsequent self-regulation.

Managing Negative Affect Depletes Self-Regulatory Strength

Over the last decade, considerable evidence has been gathered in favor of a strength model of self-regulation (for a recent meta-analysis, see Hagger, Wood, Stiff, & Chatzisarantis, 2010). This model posits that self-regulation relies on a common resource that can become temporarily exhausted by effortful self-regulation, and that when this resource is exhausted, further attempts at self-regulation are likely to fail (Baumeister & Heatherton, 1996). This phenomenon is typically studied using a sequential task paradigm in which an initial self-regulatory task is used to deplete resources, thereby rendering subsequent self-regulation attempts (even those in different domains) less likely to succeed. Studies have shown that tasks as varied as suppressing thoughts and stereotypes (Gordijn, Hindriks, Koomen, Dijksterhuis, & Van Knippenberg, 2004; Muraven, Collins, & Nienhaus, 2002), making decisions (Vohs et al., 2008), and managing impressions (Richeson & Shelton, 2003) all can lead to self-regulation failure on subsequent tasks. In terms of relevance to this chapter, it is interesting to note that one of the methods most often used for depleting self-regulatory resources is to have participants engage in an emotion regulation task (typically inhibiting emotional responses). For example, regulating emotional responses to an emotionally provocative film reduces persistence on difficult tasks (Baumeister, Bratslavsky, Muraven, & Tice, 1998), impairs performance on executive tasks (Schmeichel, Vohs, & Baumeister, 2003) and leads dieters to break their diets and overeat (Vohs & Heatherton, 2000). These findings strongly suggest that emotion regulation exhausts a common domain-general resource leading to impairments on subsequent self-control tasks.

As we have seen in the previous section, negative affect is often accompanied by concurrent attempts to regulate that affect. To the degree that this emotion regulation strategy is effortful, the strength mode of self-regulation suggests that, above and beyond the cost incurred to monitoring (see previous section), regulating negative affect would also deplete self-regulatory strength, increasing the likelihood of self-regulation failure. Indeed, in the previously mentioned
study by Vohs and Heatherton (2000) this is precisely what was found when dieters who were asked to inhibit their expression of sadness while watching an emotionally evocative video subsequently overindulged themselves in appetizing ice cream.

Although the bulk of the research on self-regulatory depletion and emotion examines how emotion regulation can produce subsequent self-regulation failure on nonemotional tasks, studies show that this effect goes both ways, such that engaging in effortful self-regulation also impairs subsequent attempts at emotion regulation. The first researchers who looked at this question had participants engage in a thought suppression task, followed by an emotion regulation task that required participants to inhibit expressing emotions evoked by an emotional video (Muraven, Tice, & Baumeister, 1998). They found that participants whose resources had been depleted by the thought suppression task were subsequently less successful at inhibiting their emotions. In another study, Schmeichel (2007) extended these findings to more traditional tasks of executive function. In this experiment, participants completed a complex working memory task, followed by an emotion inhibition task. As in the Muraven et al. (1998) study, participants whose self-regulatory resources were depleted by the complex working memory task were impaired at suppressing their emotions relative to a nondepleted control group (Schmeichel, 2007).

More recently, the interplay between self-regulatory strength and emotional regulation was investigated using functional neuroimaging (Wagner & Heatherton, 2013). In this study, participants were assigned to either a depletion condition, in which they completed a difficult attention control task, or a control condition. Next, all participants viewed a series of emotional scenes differing in valence. Compared to control participants, those who were depleted exhibited greater neural activity in the amygdala, a region involved in the perception and detection of emotion, when viewing negative emotional scenes. Moreover, depleted participants exhibited reduced connectivity between the amygdala and prefrontal regions implicated in top-down control, suggesting a failure to engage in emotion regulation (Wagner & Heatherton, 2013).

Taken together, the results of the studies reviewed in this section offer both behavioral and neural evidence that engaging in self-regulation, be it in the emotional or the cognitive domain, leads to transient impairments in subsequent self-regulation attempts. Thus, with respect to our poison tendrils model of negative affect, ongoing attempts to regulate negative affect serve to reduce self-regulatory capacity, thereby increasing the likelihood of self-regulation failure (Figure 36.1B). Moreover, these findings suggest that it is important to consider the individual’s prior self-regulatory context, as having to engage in other forms of self-regulation can lead to transient impairments of emotion regulation, which may exacerbate the effects of negative affect on self-regulation.

**Depleting Self-Regulatory Strength Intensifies Emotions and Impulses**

Although early models of self-regulation tacitly assumed that the strength of impulses and emotions remain essentially unchanged during self-regulation failure, recent theories suggest that impulses and emotions may increase in strength when self-control is depleted (e.g., Heatherton & Wagner, 2011; Schmeichel, Harmon-Jones, & Harmon-Jones, 2010; Vohs et al., submitted). For instance, the recent study by Vohs and colleagues demonstrated that when participants are in a depleted state, they experience stronger cravings for appetizing food, as well as rate emotions and pain as being felt more acutely than do nondepleted participants. The results of the brain imaging study by Wagner and Heatherton (2013) bear some similarities to these findings. Although the results of this study were interpreted in terms of emotion dysregulation following depletion, it is equally plausible that self-regulatory depletion served to amplify people’s experience of affect, resulting in greater amygdala activity in response to negative scenes, thus making emotion regulation more difficult.

This relatively new line of research suggests that self-regulatory depletion not only harms subsequent attempts at self-control but also increases the strength of emotions and desires. For the current discussion this suggests that managing ongoing negative
Mood Repair and Escaping Negative Affect Take Precedence over Long-Term Goals

One likely explanation for why people turn to eating, smoking, and drinking in times of emotional distress is that they believe such activities can restore their mood (Sayette, 1993). Indeed, even in nonhuman animals, consuming pleasurable foods has been shown to reduce neuroendocrine markers of distress (Foster et al., 2009). In humans, research has shown that merely being exposed to appetizing stimuli (e.g., food, drugs, alcohol) can activate positive hedonic thoughts (Hofmann, van Koningsbruggen, Stroebe, Ramanathan, & Aarts, 2010; Sayette & Hufford, 1997). For instance, in dieters, exposure to descriptions of appetizing foods has been shown to spontaneously activate more hedonic thoughts about the pleasurable aspects of eating than descriptions of neutral foods (Papies, Stroebe, & Aarts, 2007). This attention to the pleasurable aspects of temptations can have serious consequences, especially in cases of alcohol and substance use in which withdrawal from the substance elicits negative affect that is relieved only by further substance use. It has been suggested that this need to cope with—and escape from—negative affect produced by withdrawal is one of the central motivations underlying addiction (Baker, Piper, McCarthy, Majeskie, & Fiore, 2004). Moreover, through prolonged conditioning of substance use and improved mood, any experience of negative affect—whether due to specific triggers or merely the vicissitudes of daily life—can trigger the desire for drugs or alcohol (Baker et al., 2004; Childress et al., 1994).

Given people's belief that consuming food and alcohol or engaging in pleasurable activities will improve their mood, is there any empirical evidence that people employ this strategy when experiencing negative affect? Studies examining a wide range of behaviors show that, upon experiencing negative affect, people report consuming their favorite substance (e.g., food, alcohol, or drugs) or engaging in their favorite activity (e.g., shopping, television, gambling) precisely because they believe it will make them feel better (e.g., Faber & Christenson, 1996; Rook, 1987; Sayette, 1993). Thus, when stuck in a negative emotional state, people will shirk their long-term goals in order to address the more immediate need to feel better. One particularly disconcerting example of mood repair following negative affect comes from a study in which participants were asked to rate the personalities of ethnic ingroup and outgroup members. Participants who were induced to experience negative affect—as a result of negative performance feedback on an ostensibly unrelated test—subsequently rated the ethnic outgroup members more negatively than did control subjects (Fein & Spencer, 1997). Moreover, it was found that this tendency to denigrate outgroup members led to increased self-esteem in the negative affect group, suggesting that participants denigrated outgroup members in order to make themselves feel better. Likewise, when people experience social rejection, they become more willing to take illicit drugs or waste money on goods that are liked by their peers, but not necessarily by themselves, if doing so increases their chances at fitting in (Mead, Baumeister, Stillman, Rawn, & Vohs, 2011). Other examples involve the effect of negative affect on spending. In these studies, negative affect has been shown to increase participant’s willingness to pay more for goods, as well as sell things they already own for less money (Lerner, Small, & Loewenstein, 2004). These findings were taken to indicate that people see buying new things or selling old things as a way of changing their current state and thereby escape negative affect.

Although attempting to repair one's mood through engaging in pleasurable activities such as eating may seem like a good temporary strategy to alleviate negative affect, studies show that this form of mood repair is often a case of misregulation. Unlike other forms of self-regulation failure, misregulation is not so much a lack of self-control as the use of self-control in a misguided—and often futile—attempt to improve one's state (Baumeister & Heatherton, 1996). For instance, studies show that although dieters may binge-eat in an attempt to improve their mood, they often end up feeling worse.
after eating than they did before (for a meta-
alysis, see Haedt-Matt & Keel, 2011).

Finally, a study by Tice and colleagues
(2001) elegantly demonstrated that cer-
tain cases of disinhibited behavior are due
entirely to a motivated attempt to improve
affective states. In this study, participants
were induced to experience negative affect,
but in one group they were given a pill
and told that it would freeze their mood.
Whereas participants who did not receive
the mood-freezing pill exhibited typical
signs of self-regulation failure, such as eat-
ing unhealthy foods or procrastinating with
pleasurable activity before a task, those who
took the mood-freezing pill showed no signs
disinhibition (Tice et al., 2001). Thus,
when participants believed engaging in pleas-
surable activities could not improve their
negative emotional state, they ceased trying
to change their mood by indulging in these
activities.

The case of misregulation is particularly
interesting, because it suggests that self-
regulation failure following negative affect
is not always due to a failure in the machin-
ery of self-regulation; rather it reflects a con-
scious shift in priorities as people focus on
improving their immediate affective state
at the expense of their long-term regulatory
goals. Indeed, it has been suggested that
sometimes people actually use self-control
to bring about personal harm, such as when
they smoke or use drugs to fit in and make
friends (Rawn & Vohs, 2011). However,
these short-term strategies often lead to
more negative affect as people move further
and further away from their goals, such as
when dieters overeat to improve their mood
but then finds themselves further from their
goal of weight loss (Heatherton & Polivy,

Intimately related to the notion of mis-
regulation is research on escape from self-
awareness (Baumeister, 1991; Heatherton &
Baumeister, 1991). In contrast to the mood
repair hypothesis outlined earlier, escape
theory posits that self-awareness is aver-
sive for people who possess negative self-
views (see Higgins, 1987). Unfortunately,
for those with negative self-views, increas-
ing self-awareness does not help them regu-
late, because self-awareness itself can lead to
negative affect as people’s attention becomes
focused on their perceived shortcomings
(Mor & Winquist, 2002). For these people,
escaping self-awareness becomes an effec-
tive strategy for reducing negative affect.
However, attempts to reduce self-awareness
come at the expense of the ability to focus
on long-term goals and an increased vulner-
bility to temptations in the immediate envi-
ronment. For example, dieters who experi-
ence a self-esteem threat are more likely
than nondieters to overeat (Heatherton et
al., 1993). Likewise, following self-esteem
threats, people drink more alcohol (Hull &
Young, 1983), watch more television (Mos-
kalenko & Heine, 2003) and avoid sitting in
front of mirrors (Twenge, Catanese, & Bau-
meister, 2003).

With respect to our model, this suggests
that, in some instances, negative affect inter-
feres with the machinery of self-regulation
(e.g., monitoring or capacity), but in other
circumstances, people chose to indulge in
temptations as a means of repairing their
mood. This form of misregulation may tem-
porarily relieve negative affect, but once the
awareness sets in that people have failed at
their regulatory goals, further negative affect
ensues, thus jeopardizing future attempts
at self-regulation (see also Heatherton and
Polivy’s [1992] spiral model describing the
relationship between negative affect and
chronic dieting).

Are All Negative Emotions
Equally Likely to Cause
Self-Regulation Failure?

In many of the studies we have reviewed,
extage refers primarily to any
unpleasurable or aversive emotional state,
thus subsuming a variety of emotional
categories—from frustration to shame
to social rejection. In some cases, nega-
tive affect is assessed through self-reports,
whereas in others the emotional state is
experimentally induced, affording more
control over the specific emotions produced.
That being said, differences between nega-
tive emotion types are seldom reported, with
two exceptions. The first involves research
in chronic dieters demonstrating that nega-
tive affect inductions that specifically target
an individual’s self-esteem (e.g., negative
performance feedback, social rejection) are
more effective at producing disinhibited eat-
ing (Heatherton et al., 1991, 1993, 1998;
Lattimore & Maxwell, 2004) than induc-
tions targeting physical distress (e.g., fear of electric shock; Heatherton et al., 1991; Herman & Polivy, 1975).

The second exception involves research on the consequences of being socially excluded. As described earlier, social rejection can lead to poorer task performance, selfishness, aggression, and increased eating in dieters. Paradoxically, however, other studies indicate that inducing feelings of social rejection can increase affiliative behaviors (Maner, DeWall, Baumeister, & Schaller, 2007; Williams & Sommer, 1997), as well as improve memory for social information (Gardner, Pickett, & Brewer, 2000). One explanation for this discrepancy is that socially rejected people are adaptively deploying both protective and affiliative strategies, such that when the opportunity for forging new social bonds appears low (as in some experiments) they react with selfish and occasionally hostile behaviors, whereas when there is an opportunity for meaningful social contact, they instead switch to an affiliative strategy in an attempt to repair their self-esteem (e.g., Baumeister, Brewer, Tice, & Twenge, 2007; Maner et al., 2007; Smart Richman & Leary, 2009). Indeed, a recent imaging study found that interpersonal distress led to increased mental engagement for positive social stimuli (as indexed by activity in medial prefrontal cortical regions associated with mentalizing) and decreased engagement for negative social stimuli (Powers, Wagner, Norris, & Heatherton, 2013). Although these reactions to social rejection have only tangential bearing on positive social stimuli (as indexed by activity in medial prefrontal cortical regions associated with mentalizing) and decreased engagement for negative social stimuli, these effects are likely to take place. In this chapter we have primarily focused on the role of negative affect in eliciting self-regulation failure “in the moment,” when people are confronted with the immediate need to regulate themselves, such as when faced with temptations. Over longer time frames, outside of these “hot” moments, negative affect may very well serve to motivate individuals to change their current state for the better (Heatherton & Polivy, 1992).

Can Negative Affect Ever Increase Self-Regulation Success?

Much of the work discussed here has examined the influence of affect on self-regulation in “hot” contexts, such as when faced with the opportunity to indulge in temptations or pleasurable activities. Emotion can, however, color behavior in other ways. For instance, in Schwarz’s (1990) feelings as information model, an individual’s current emotional state can be used as information in making evaluative judgments or resolving ambiguities. For example, following a negative mood induction, people tend to judge their current happiness and life satisfaction less positively than when in a positive mood (Schwarz & Clore, 1983). Other research shows that people in a negative mood tend to elaborate on information, demonstrating more accurate performance on tasks requiring attention to details (reviewed in Schwarz, 1990). Other theorists have suggested that emotions signal the need for self-regulation. For instance, Carver and Scheier (1990) argued that positive emotions signal that a person is achieving his or her goal (e.g., successfully dieting), whereas negative emotions arise when a person is moving away from his or her goal (e.g., gaining weight during a diet). From this perspective, then, negative affect should serve to increase rather than thwart efforts at self-regulation. The discrepancy between the preceding theories and the evidence reviewed in this chapter can be resolved if we consider when in time these effects are likely to take place. In this chapter we have primarily focused on the role of negative affect in eliciting self-regulation failure “in the moment,” when people are confronted with the immediate need to regulate themselves, such as when faced with temptations. Over longer time frames, outside of these “hot” moments, negative affect may very well serve to motivate individuals to change their current state for the better (Heatherton & Polivy, 1992).

The Role of Positive Affect in Self-Regulation Success and Failure

In the preceding sections we have focused solely on the role of negative affect in self-regulation failure, with scant mention of its opposite, positive affect. This is largely for two reasons: First, researchers have often neglected positive affect in favor of negative affect (see Ashby, Isen, & Turken, 1999); second, of the research that does consider positive affect, there is less evidence that it
plays a strong part in self-regulation failures or successes, at least in the types of contexts discussed in this chapter. For example, compared to positive moods, negative moods and events are typically found to be more memorable and are experienced more intensely (see Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001). Moreover, in the mood induction studies reviewed earlier, of those that have directly compared negative and positive affect, negative always trump positive (Willner & Jones, 1996; Tiffany & Drobes, 1990). Thus, it appears that negative affect is generally a much more potent force than positive affect in self-regulation failure.

Does positive affect promote self-regulation success? There is some research suggesting that positive affect can serve to momentarily increase self-regulation strength. For instance, when people hold the goal of self-improvement in mind, positive affect inductions lead to increased use of self-control (Fishbach & Labroo, 2007). Based on these results, Fishbach and Labroo suggest that positive affect pushes people to strive toward a currently activated goal. If that goal happens to be about self-improvement, then self-regulation may follow; however, if the goal is mood regulation, then self-regulation may suffer to the degree that it is opposed to maintaining a positive mood. Another study showing beneficial effect of positive affect on self-regulation found that inducing positive affect restored self-regulation capacity following self-regulatory depletion (Tice, Baumeister, Shmueli, & Muraven, 2007). This finding suggests that the capacity to engage in self-control is at least partially moderated by affect. In fact, to the degree that participants in the Tice et al. study hold the goal to succeed at the tasks laid out by the experimenters, then the results of Fishbach and Labroo (2007) would suggest that the positive affect induction reversed the effects of self-regulatory depletion by pushing subjects to expend whatever resources they had left in the service of the goal of succeeding at the task. It is worth pointing out that although these studies suggest that positive affect can increase self-control under certain circumstances, it is likely that under a different set of circumstances (e.g., at a bar), with a different goal in mind (e.g., celebrating with friends), positive affect may lead to greater celebratory excess.

**Conclusion**

Negative affect may very well be the most potent disinhibitor of restrained behavior. When people feel worthless, depressed, or rejected, they are more likely to engage in a variety of self-defeating behaviors. Following negative affect, dieters overeat, former smokers smoke, and alcoholics fall into relapse. More generally, people become more likely to procrastinate, to be selfish or hostile, and even go so far as to denigrate outgroup members. Negative affect appears to accomplish this pernicious feat by poisoning all facets of self-regulation (see Figure 36.1): sensitizing people to rewards and temptations, decreasing monitoring of behavior, reducing self-regulatory capacity, and causing people to focus on repairing their mood at the expense of abandoning their goals and giving in to their impulses and desires.

Although it often appears that our self-control is entirely at the mercy of our emotions, it is also the case that emotion regulation can be derailed by prior attempts at self-regulation in the cognitive domain. For instance, engaging in effortful self-regulation tasks can exhaust self-regulatory resources, thereby jeopardizing subsequent emotion regulation attempts. Moreover, recent research has shown that when people are cognitively depleted by prior attempts at self-regulation, emotions and impulses appear to increase in potency, rendering them a more forceful adversary to self-control.

The interplay among emotions, emotion regulation, and self-regulation has been discussed as though each of the myriad ways that emotions can hijack self-control work independently of the others. However, it is far more likely that the multiple routes to self-regulation failure are themselves interactive. For instance, negative affect can lead to a desire to escape negative states by reducing self-awareness and also to engage in pleasurable activities, even if these activities conflict with long-term goals. Together, these may serve to increase the pull of immediately available rewards, because the ability to monitor behavior is lessened as the focus shifts to pleasure. Negative affect may also place a load on working memory independent of the desire to escape self-awareness, thus further reducing the ability to monitor behavior. Throw in the fact that prior self-regulatory effort may leave the individual
in a depleted state in which both resources for further self-control are lacking and the strength of impulses and temptations is increased, and it is a small miracle that people are not constantly acting out their fantasies, drinking, smoking, or indulging every gastronomic desire. If the studies reviewed in this chapter paint a dire picture, it is important to note that emotion is not all bad: For instance, it has been demonstrated that experiencing positive emotions can improve self-regulation by helping to buffer against the depleting effects of prior tasks (Tice et al., 2007).

In this chapter we reviewed evidence suggesting that negative emotions are a potent cause of self-regulation failure and we have proposed a simple poison tendrils model in which negative affect invades and disrupts nearly every aspect of self-regulatory function. Moreover, results from a variety of behavioral and neural studies suggest that the relationship between emotions and self-regulation is dynamic and interactive, such that emotion-induced self-regulation failure serves not only to intensify currently experienced emotions and desires but also to increase negative affect as the individual moves further and further away from his or her goals. Negative affect is thus a particularly potent threat to self-regulation, because it not only reduces the capacity for control (increased working memory load, reduced self-awareness and monitoring) but it may also lead to increases in the strength of experienced desires and emotions, rendering them all the more difficult to resist.

References


Emotion and Self-Regulation Failure


Papies, E., Stroebe, W., & Aarts, H. (2007). Pleasure in the mind: Restrained eating and spon-


